46 research outputs found

    A Dynamical Quantum Cluster Approach to Two-Particle Correlation Functions in the Hubbard Model

    Full text link
    We investigate the charge- and spin dynamical structure factors for the 2D one-band Hubbard model in the strong coupling regime within an extension of the Dynamical Cluster Approximation (DCA) to two-particle response functions. The full irreducible two-particle vertex with three momenta and frequencies is approximated by an effective vertex dependent on the momentum and frequency of the spin/charge excitation. In the spirit of the DCA, the effective vertex is calculated with quantum Monte Carlo methods on a finite cluster. On the basis of a comparison with high temperature auxiliary field quantum Monte Carlo data we show that near and beyond optimal doping, our results provide a consistent overall picture of the interplay between charge, spin and single-particle excitations.Comment: 8 pages, 11 figure

    The 3-Band Hubbard-Model versus the 1-Band Model for the high-Tc Cuprates: Pairing Dynamics, Superconductivity and the Ground-State Phase Diagram

    Full text link
    One central challenge in high-TcT_c superconductivity (SC) is to derive a detailed understanding for the specific role of the CuCu-dx2−y2d_{x^2-y^2} and OO-px,yp_{x,y} orbital degrees of freedom. In most theoretical studies an effective one-band Hubbard (1BH) or t-J model has been used. Here, the physics is that of doping into a Mott-insulator, whereas the actual high-TcT_c cuprates are doped charge-transfer insulators. To shed light on the related question, where the material-dependent physics enters, we compare the competing magnetic and superconducting phases in the ground state, the single- and two-particle excitations and, in particular, the pairing interaction and its dynamics in the three-band Hubbard (3BH) and 1BH-models. Using a cluster embedding scheme, i.e. the variational cluster approach (VCA), we find which frequencies are relevant for pairing in the two models as a function of interaction strength and doping: in the 3BH-models the interaction in the low- to optimal-doping regime is dominated by retarded pairing due to low-energy spin fluctuations with surprisingly little influence of inter-band (p-d charge) fluctuations. On the other hand, in the 1BH-model, in addition a part comes from "high-energy" excited states (Hubbard band), which may be identified with a non-retarded contribution. We find these differences between a charge-transfer and a Mott insulator to be renormalized away for the ground-state phase diagram of the 3BH- and 1BH-models, which are in close overall agreement, i.e. are "universal". On the other hand, we expect the differences - and thus, the material dependence to show up in the "non-universal" finite-T phase diagram (TcT_c-values).Comment: 17 pages, 9 figure
    corecore